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Chaotic component obscured by strong periodicity in voice production system
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The effect of glottal aerodynamics in producing the nonlinear characteristics of voice is investigated by
comparing the outputs of the asymmetric composite model and the two-mass model. The two-mass model
assumes the glottal airflow to be laminar, nonviscous, and incompressible. In this model, when the asymmetric
factor is decreased from 0.65 to 0.35, only 1:1 and 1:2 modes are detectable. However, with the same
parameters, four vibratory modes (1:1, 1:2, 2:4, 2:6) are found in the asymmetric composite model using the
Navier-Stokes equations to describe the complex aerodynamics in the glottis. Moreover, the amplitude of the
waveform is modulated by a small-amplitude noiselike series. The nonlinear detection method reveals that this
noiselike modulation is not random, but rather it is deterministic chaos. This result agrees with the phenom-
enon often seen in voice, in which the voice signal is strongly periodic but modulated by a small-amplitude
chaotic component. The only difference between the two-mass model and the composite model is in their
descriptions of glottal airflow. Therefore, the complex aerodynamic characteristics of glottal airflow could be
important in generating the nonlinear dynamic behavior of voice production, including bifurcation and a
small-amplitude chaotic component obscured by strong periodicity.
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I. INTRODUCTION

The bifurcation and chaos phenomena related with non-
linear systems are widely observed in physical and biological
systems, such as electronic circuits [1], superconductors [2],
neurology [3], and cardiology [4]. Nonlinear dynamic theory
provides deeper insight into these complex natural phenom-
ena. The voice of a vertebrate is generated by a highly non-
linear oscillator, comprised of the vocal folds and glottal air-
flow. Rich nonlinear phenomena, including subharmonics,
diplophonic, double period doubling bifurcation, chaos, and
spatiotemporal chaos, have been observed in birdsong [5-7],
human voice [8], the cries of newborn infants [9], excised
larynx experiments [10], and the calls of mammals [11,12].
Knowledge of the nonlinear components of voice is expected
to be useful for understanding voice production [13], im-
proving the realistic synthesis of voice [14], and providing
potential clinical applications in assessment and treatment of
voice diseases [15]. Therefore, the nonlinear dynamics in
voice production have recently received considerable atten-
tion.

Several models have been used to investigate the genera-
tion of nonlinear dynamics in voice [13,14,16-21]. Trregular
vibration patterns were initially detected in a two-mass
model with a sufficiently large left-right tension imbalance
[13]. Bifurcations and chaos were then predicted by a sym-
metric vocal fold model with tissue parameters obviously
deviating from the normal values [16]. Trregular vocal fold
oscillations were also found in the continuous model with
soft tissue [20] and pathological phonation [21]. These stud-
ies suggest that abnormalities in vocal tissue are important
causes of irregular vocal fold vibration. The introduction of
random perturbations into a vocal fold model has been found
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to decrease the threshold value necessary for a system to
produce irregular vocal fold vibration [17]. Recently, by con-
sidering the source-filter acoustic interaction, delayed feed-
back due to reflected sound in the vocal tract was shown to
contribute to extremely rich dynamics, such as period dou-
bling bifurcation and nonperiodic oscillation [18]. These
studies explain the cause of rough voice production and ir-
regular vibrations of vocal folds that are typical of many
vocal diseases.

Glottal airflow plays an important role in voice production
because vocal fold vibrations are generated by the fluid-
tissue interaction. It is known that real fluid is very complex,
and various dynamical behaviors can be found in real fluid,
including asymmetry, vortices, turbulence [22,23], bifurca-
tion [24], and spatiotemporal chaos [25,26]. These phenom-
ena are also components of glottal airflow [27-35]. These
complexities of glottal airflow could be responsible for varia-
tion in the phonation threshold pressure [36] and for the
asymmetric vibration of the vocal fold [37]. However, this
causal linkage was not considered in most of the previous
studies of irregular vocal fold vibration because the airflow
was often simplified in accordance with Bernoulli’s law and
the laminar, nonviscous, and incompressible assumption.
Few works have studied the influence of the complex spa-
tiotemporal behaviors of glottal airflow on the vocal fold
vibration, particularly irregular vibrations.

In this study, we simulated and analyzed the contribution
of the complexity of glottal airflow on irregular vocal fold
vibration. The Navier-Stokes (NS) equations were used to
predict the spatiotemporal behavior of glottal aerodynamics,
and the tissue mechanics of the vocal folds were simplified
to an asymmetric two-mass model. The interaction of the
vocal fold and the glottal airflow generates self-oscillation.
Using this model, we studied the various oscillatory patterns
of vocal folds. To investigate the effect of airflow on vocal
fold vibration, the dynamic behaviors of the vocal folds
when driven by an airflow description based on the NS equa-
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tions and when driven by an airflow description based on
Bernoulli’s law were compared. The nonlinear detection
method proposed by Barahona and Poon [4,38,39], which
has the ability to detect the nonlinearity in a short, strong
periodic series, was used to analyze the nonlinear character-
istics of vocal fold vibration.

II. MODEL AND ANALYSIS METHOD

A. Asymmetric composite vocal-fold model

An asymmetric composite model, developed from the
composite model [37], was employed to predict the vocal
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where x;, is the displacement of mass m;,, r;, is the damping
constant, k;, is the spring constant, L is the length of the
glottis, ¢;,=3k;, is the additional spring constant during col-
lision, and k., is the coupling constant between the upper
and lower masses. The index i denotes the inferior (i=1) and
superior masses (i=2), while the index « represents right
(a=r) and left (a=I) masses. The term a;,=ag +(x,
+x;,)L is the lower glottal area and a,,=ag+(x,,+xy)L is
the upper glottal area, where a; refers to the prephonatory
glottal areas. The term O(—a;,)c; /2L represents collision
with

O(x) = {tanh(SOx/xo), x>0

. 3
0, x=0 3)

Unilateral laryngeal paralysis is modeled as follows:
m; = mir/Q’ kil = Qkin kcl = ch‘w Ciy= Qciw (4)

where Q is the asymmetric factor. The other parameters of
the left vocal fold are identical with those of the right vocal
fold. Table I presents the lumped-mass parameters used in
the simulation.

The intraglottal airflow force vector F, applied to the vo-
cal fold surface provides the driving force for the vocal fold
vibration and can be defined as

dig T
Fa= l07(L/mla)J pa(y)dy70’0] 5 (5)

0

where d,, is the thickness of mass m,, and p(y) refers to
the pressure on the vocal glottis wall. The NS equations are
used to describe the spatiotemporal pattern of glottal airflow,
that is,
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fold vibrations induced by complex airflow. The asymmetric
two-mass model [13,40] was used to describe the tissue me-
chanics of vocal folds with unilateral laryngeal paralysis,

dx,

— = s M) +F . 1
dr V(X M) (1)

The displacement vector x, is written as X,
=[X1a» Uia X4 U2o]'. The velocity vectors v, relating
with x,, and the tissue parameter vector u,,, can be described
as
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where p=1.2kg/m®> is the flow density, u=1.8

X 107> N s/m? is the viscosity, V is the velocity vector, and
p is the pressure of flow. The glottal length is 0.3 cm. The
prephonatory superior and inferior glottal widths are both
0.178 57 mm. A 2-cm inlet duct and an 8-cm outlet duct
represent the trachea and the vocal tract, respectively. Their
widths are both 2 cm. Figure 1 illustrates the structure of the
airflow channel around the glottis. The no-slip condition was
applied to both the tracheal wall and the vocal tract wall. The
specified pressure condition was set at the inlet of the sub-
glottal tube to drive the model, and the zero pressure bound-
ary condition was set at the outlet of the supraglottal tube.
The moving wall condition was applied to the fluid-solid
interaction boundary. Using the given boundary condition,

TABLE 1. Parameter values.

Parameter Value
My Lower mass 0.125 g
Mog Upper mass 0.025 g

ki Lower spring constant 80 kdyn/cm
k> g Upper spring constant 8 kdyn/cm
keo Coupling spring constant 25 kdyn/cm
"a Damping constant 20 g/s

Ta Damping constant 20 g/s
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FIG. 1. The system diagram of the composite vocal fold
model.

the flow pressure p can be solved using the NS equations.

In our simulation, the NS equations and the two-mass
vibration model were fully coupled and simultaneously
solved in every iteration step. The values of the glottal dis-
placements and the velocities solved from the two-mass
model were applied to the glottal wall to define the boundary
condition. Simultaneously, the airflow pressure solved from
NS equations was applied as the driving force for the two-
mass model. By alternating between solving the NS equa-
tions and solving the asymmetric two-mass equation, a self-
oscillating solution was obtained from the iterative process.
The NS equations were solved by using the FLOTRAN CFD
analysis of the finite-element software ANSYS. A custom pro-
gram was developed in ANSYS Parametric Design Language
to solve the two-mass equation with the fourth-order Runge-
Kutta routine and manage the airflow-tissue interaction. In
the time domain, both the NS equations and the two-mass
equation were integrated with a time step of 50 us. Before
the above model was used in this study, we halved the grid
spacing, reduced the time step and the convergence criteria
by a factor of 10, and reran the simulation. The solution is
essentially the same as before. The tests verified that this
model is independent of the grid size, time step, and conver-
gence criteria [37,41,42]. The aerodynamic outputs of this
model were also compared with previous static model simu-
lations and experimental measurements [27-30] in a sym-
metric situation (Q=1). It was found that glottal acrodynam-
ics, such as the pressure distribution, Coanda effect, and
others, can be correctly predicted by this model. More details
can be found in our previous paper [37].

B. Nonlinear dynamics detection method

It has been suggested that the strength of nonlinearity in
the data can be measured by comparing nonlinear and linear
predictability [43], and this concept has been applied to
quantify the amount of nonlinearity in the vocalizations of
macaque screams, piglet screams, and dog barks [44]. Based
on a similar concept, the nonlinear dynamics detection
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method proposed by Barahona and Poon [38] was used to
analyze the nonlinearity of the model output in this study.
This nonlinearity detection method is superior when applied
to short time series, even when the series is heavily contami-
nated with noise or in the presence of strong periodicity. As
a result, it has been successfully employed to detect chaos in
the beat-to-beat interval series of electrocardiograms [4] and
in human speech [45]. This method is based on the compari-
son of the one-step-ahead prediction error of the linear and
the nonlinear model. Its procedure is as follows:

For time series x, (n=1,...,N), a discrete Volterra-
Wiener-Korenberg series of degree d and memory « is used
as a model to calculate the predicted time series x,;,

' 2
xn=a0+a].xn_1 +ayx, o+ " +aKxn_K+aK+1Xn_l

d
A2 X1 Xyt Ay 1 X (®)
The coefficient a,, is estimated through a Gram-Schmidt pro-

cedure, and the standard deviations of the one-step-ahead
prediction error are calculated,

N
> [x(k.d) = x, 1P N
e(k.d)? =" with ¥ = ]%2 x,. (9)
> (- ? "

n=1

For each data series, the best linear model (d=1) and the best
nonlinear model (d>1) are obtained, respectively, by
searching for «''" and «", which minimizes

C(r)=1log &(r) +r/N, (10)

where re[1,M] is the number of polynomial terms of the
truncated Volterra expansions from a certain pair {«,d}. The
minimum C values corresponding with the linear and non-
linear model are C''"" and C", respectively. If the best nonlin-
ear model is significantly more predictive than the best linear
model (C'""> C™), it indicates that the original series is non-
linear. Otherwise, it may be inferred that the original series is
not chaotic or the chaotic component is too weak to be de-
tected.

III. RESULTS

During phonation, the high subglottal pressure pushes the
left and right vocal folds apart, and air escapes from the
lungs through the glottis. High-velocity airflow decreases the
glottal airflow pressure, which causes the vocal folds to
close. The glottal airflow provides the energy for the vocal
fold vibration, so it has an important effect on vocal fold
vibration and voice production. Figure 2 presents the spa-
tiotemporal pattern of the downstream glottal airflow with
0=0.64 and P,=1.0 kPa. The velocity value is detected at
the line y=1.0 as shown in Fig. 1. It can be seen that the
airflow shows complex behavior in both the time domain and
the space domain. In the time domain, the airflow shows a
series of pulses because of the glottis’s periodic opening and
closing. However, this periodicity of the airflow pulse in the
time domain is not strict due to the disturbing effects of
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FIG. 2. The spatiotemporal pattern of airflow in the vocal
tract.

vortices and turbulence. In the space domain, the airflow is
significantly asymmetric due to the tension asymmetry of the
vocal folds and the Coanda effect [27,30,32,37,46]. Previous
studies have revealed that external noise could affect the on-
set of chaos [47,48]. Therefore, the complex spatiotemporal
behavior of the aerodynamics could also influence vocal fold
vibration and voice production.

Figure 3 plots the maxima of x;, as a function of the
asymmetric factor Q, which is predicted by the composite
model with P;=1.0 kPa. Rich dynamic behaviors can be
found in the composite vocal fold model. The dotted lines 1,
2, 3, and 4 correspond to four typical asymmetric situations,
0=0.64, 0.50, 0.45, and 0.36, respectively. Their corre-
sponding wave forms are illustrated in Figs. 4(a)-4(d).

In the following discussion, the different vibration pat-
terns are labeled with the ratio of the number of the maxima
of x;; and x,, during one total cycle [13]. An m:n mode (m
and n are integrated numbers) denotes that there are m
maxima of x;; and n» maxima of x;, during one total cycle. At
0=0.64, the waveforms of x;, and x;; obtained from the
composite model are approximately periodic. Moreover, the
number of the maxima of x;, is the same as the number of
the maxima of x,;, as shown in Fig. 4(a). So we can consider
the vibration mode to be 1:1 in this situation [13]. However,
the periodicity of the composite model is not strict and the
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FIG. 3. (Color online) The maxima of x;, as a function of the
asymmetric factor Q obtained from the composite vocal fold model,
where the subglottal pressure is 1.0 kPa. (a) The left vocal fold; (b)
the right vocal fold. Both vocal folds exhibit rich dynamic behavior.
The dotted lines 1, 2, 3, and 4 correspond to 1:1 mode (Q=0.64),
1:2 mode (0=0.5), 2:4 mode (Q=0.45), and 2:6 mode (Q=0.36),
respectively.
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FIG. 4. (Color online) The waveforms of vocal fold vibration
obtained from the composite model. (a) 0=0.64 (1:1 mode); (b)
0=0.50 (1:2 mode); (¢) 0=0.45 (2:4 mode); (d) 0=0.36 (2:6
mode), where m:n mode is defined as the different vibration pat-
terns with the ratio of the number of the maxima of x;; and x;,
during one total cycle [13].

amplitude of oscillation fluctuates slightly. The aperiodic
characteristic of the waveform can be better observed in the
next-maxima plots, as shown in Figs. 5(a) and 5(b), where
the y axis is the amplitude value of the ith peak and the x
axis is the amplitude value of the next [(i+1)th] peak. It
shows that the trajectory obtained from the composite model
is scattered within a small domain, rather than being made up
of one or several discrete points. This kind of attractor usu-
ally indicates a random or chaotic series. By applying Bara-
hona and Poon’s nonlinear dynamics detection method to
analyze the dynamic characteristics of the maxima series, we
are able to classify it as random or chaotic. It was found that
the maxima series is predictable. Furthermore, the nonlinear
polynomial is significantly more predictable than the linear
polynomial. Figs. 5(c) and 5(d) presents these results, which
suggest that the maxima series is not a random noise, but
deterministic chaos [38].

At 0=0.50, the peak number of the waveform of x;, is
almost twice the peak number of x;;, which indicates a 1:2
vibration mode in this situation. Figures 6(a) and 6(b) illus-
trate the trajectory points of the left and right vocal folds in
the next-maxima space. Similar to the situation at 0=0.64,
the trajectory is not comprised of discrete points, but is scat-
tered within a certain domain. The trajectory points of the
left vocal fold are distributed around (1.10,1.10). However,
in contrast to the situation at 0=0.64, the trajectory points of
the right vocal fold are grouped in two separate islands. The
trajectory evolves in these disconnected domains and alter-
natively between different points in each of them, as indi-
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FIG. 5. (Color online) Detection nonlinear dynamics of the
maximum series of x;, from the composite model with 0=0.64.
(a), (b) The next-maximum maps of x;; and x;,. (c), (d) The C(r)
value displayed as a function of the number of polynomial terms. In
comparison with the linear polynomial, the more predictive nonlin-
ear polynomial indicates the presence of deterministic chaos in the
maximum series.

cated by the arrows. When the island in the next-maxima
map of the left vocal fold is visited one time, the two islands
in the next-maxima map of the right vocal fold are each
visited one time. The ratio of the number of the maxima in
the left and right vocal folds is 1:2 in one total cycle. Figures
6(c) and 6(d) present the analysis results of the nonlinear
dynamics detection method on the maxima series. The better
predictability of the nonlinear polynomial suggests that the
maxima series of the left and right vocal folds are both es-
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FIG. 6. (Color online) Detection nonlinear dynamics of the
maximum series of x, from the composite model with 0=0.50.
(a), (b) The next-maximum maps of x;; and x;,. (c), (d) The C(r)
value displayed as a function of the number of polynomial terms.
The deterministic chaos is presented in the maximum series.
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FIG. 7. (Color online) Detection nonlinear dynamics of the
maximum series of x;, from the composite model with 0=0.45.
(a), (b) The next-maximum maps of x;; and x;,. (c), (d) The C(r)
value displayed as a function of the number of polynomial terms.
The deterministic chaos is presented in the maximum series.

sentially deterministic chaos. In addition, it is noticeable that
C(r) of the nonlinear polynomial quickly increases after it
has reached a minimum value. This could be a consequence
of numerical error due to a large number of high-order non-
linear terms.

More complex dynamic behaviors can also be observed in
the composite vocal fold model with the decreasing of asym-
metric factor Q. At 0=0.45, there are two peaks in the wave-
form of x;; and four peaks in the waveform of x;, during one
total cycle. In the next-maxima plots, the trajectory points of
the left vocal fold are assembled in two separate islands, but
the trajectory points of the right vocal fold are separated into
four disconnected domains, as shown in Figs. 7(a) and 7(b).
These separate islands are periodically visited. During one
total cycle, two islands in the next-maxima map of the left
vocal fold and four islands of the right vocal fold are visited,
indicating a 2:4 mode at Q=0.45. Under this strong period-
icity, the deterministic chaos can also be detected. Figures
7(c) and 7(d) illustrate the results of the nonlinear dynamics
detection method. It was found that the nonlinear polynomial
is much more predictable than the linear polynomial, so the
maxima series is essentially deterministic chaos. Similarly, at
0=0.36, the vocal fold vibration is in 2:6 mode and the
maxima series was noted to be deterministic chaos as well.

In addition, Steinecke and Herzel found that two different
modes could coexist in an asymmetric two-mass model [13].
Moreover, the borderline between the basin attractions of
both modes is smooth; therefore, rather weak perturbations
may induce abrupt jumps to other regimes. In this study,
besides the four typical 1:1, 1:2, 2:4, and 2:6 modes, we also
found a transient mode in which the system switches from
one mode to another mode. For example, at 0=0.56, the
system sometimes showed a 1:1 mode, and sometimes
showed a 1:2 mode. The transient mode might be the result
of jumps between two coexisting modes due to aerodynamic
perturbations.
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FIG. 8. (Color online) The maxima of x,, as a function of the
asymmetric factor Q obtained from the asymmetric two-mass
model, where the subglottal pressure is 1.0 kPa (P,=0.01). (a) The
left vocal fold; (b) the right vocal fold. When 0.476 < Q =0.65, the
left and right vocal folds show a 1:1 mode. When 0.35=Q
<0.476, the left and right vocal folds show a 1:2 mode.

The above simulation based on the asymmetric composite
model showed rich dynamic behaviors. In order to investi-
gate the role of glottal airflow in generating these dynamic
behaviors, we also simulated the vocal fold vibration using
the asymmetric two-mass model, where the glottal aerody-
namics is simplified to Bernoulli’s relationship. Figure 8
plots the maxima of x;, as a function of the asymmetric
factor Q, which is calculated from the asymmetric two-mass
model with P,=1.0 kPa. Just two kinds of dynamic behav-
iors can be found in the asymmetric two-mass model when
the asymmetric factor Q is decreased from 0.65 to 0.35.
When 0.476 <0 =0.65, the left and right vocal folds show
1:1 mode, as shown in Fig. 9(a). When Q is decreased below
0.476, the ratio of the left maxima number to the right
maxima number shifts to 1:2, as shown in Fig. 9(b).

In addition, we can see that the waveform predicted by
the two-mass model is strictly periodic, which also diverges
from the results predicted by the composite model. The strict
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FIG. 9. (Color online) The waveforms of vocal fold vibrations
obtained from the asymmetric two-mass model. (a) 9=0.6 (1:1
mode); (b) 0=0.45 (1:2 mode).
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FIG. 10. (Color online) Nonlinear analysis on the maximum
series of x|, from the asymmetric two-mass model with Q=0.45. (a)
The next-maximum maps; (b) the nonlinear detection.

periodicity can easily be displayed by the next-maxima plots.
Figure 10(a) presents the next-maxima plots of the right vo-
cal fold at 9=0.45. It can be observed that the trajectories
are concentrated in two individual points, but are not sepa-
rated into two distinct domains. The trajectory alternates be-
tween the two points. The vocal folds follow a strict double
periodic oscillation. The nonlinear dynamics detection
method shows that the nonlinear polynomial and linear poly-
nomial are similarly predictive [see Fig. 10(b)], which con-
firms that the double period series from the two-mass model
is regular and periodic, rather than chaotic.

The only difference between the two-mass model and the
composite model is in their descriptions of glottal airflow. In
the two-mass model, the glottal airflow is assumed to be
laminar, nonviscous, and incompressible. The various dy-
namical behaviors of glottal airflow are ignored. However, in
a composite model, the NS equations include a more vivid
and accurate description of the airflow than does Bernoulli’s
law. The NS equations can predict complex spatiotemporal
behaviors of airflow. We believe that the different dynamic
behaviors predicted by the two different models are caused
by this discrepancy between glottal airflow descriptions. The
rich dynamic behaviors of the composite model could be
related to the aerodynamic characteristics of glottal airflow.
Therefore, the above comparison indicates that the complex-
ity of glottal airflow could be one possible reason for the
chaotic component in the voice production system.

IV. DISCUSSION AND CONCLUSION

Previous voice analyses have shown that the voices pro-
duced by mammals and birds have significant nonlinear char-
acteristics. In the past, these nonlinearities in voice were usu-
ally explained by vocal fold asymmetry [ 13], the source-filter
acoustic interaction [19], delayed feedback due to reflected
sound in the vocal tract [18], turbulence noise disturbance
[17], abnormal biomechanical parameters of vocal fold tissue
[16], and extremely high subglottal pressure [10,16]. These
theories successfully explain the rough voice that is often
related to the pathological conditions of the vocal folds.

However, more general nonlinear phenomena have not
been thoroughly explained by these previous studies. It is
known that although a normal voice is strongly periodic,
small undulations in amplitude still exist. Traditionally, this
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disturbance of the voice amplitude is treated as a random
noise and described by the shimmer parameters. Recently,
nonlinear dynamic analysis of the speech signal shows that
these nonlinear characteristics can be found even in normal
voice with strong periodicity [8,44,45]. These findings indi-
cate that the small-amplitude disturbances in a periodically
healthy voice may not be random noise, and may instead be
a deterministic signal. This concept is still arguable [49] be-
cause the strong periodic characteristics of voice signal often
obscure these random undulations, thereby decreasing the
reliability of the analysis results of nonlinear dynamic meth-
ods. Moreover, the mechanism of production of the random
undulation in a periodic voice signal is not completely clear.

Titze has successfully explained the low-frequency voice
perturbation as the results of the random nature of motor
neuron firing [50,51]. It is known that the sustained muscle
contractions are made up of a large number of individual
twitches of groups of muscle fibers. A single twitch usually
lasts only a fraction of a second. The interval between two
twitches varies with the neural signals to fire the twitch. The
neurological fluctuations are perceived as unsteadiness in
pitch and loudness [50,51]. Besides the random neuron fir-
ing, this study indicates that the glottal airflow could be an-
other source of voice perturbation. We found that the output
of a composite model is strongly periodic. However, its am-
plitude value is disturbed by a noiselike disturbance; more-
over, the amplitude of this noiselike disturbance is much
smaller than the amplitude of the vocal fold vibration. For
example, at 0=0.64, the noiselike disturbance amplitude
makes up about 1% and 8% of the peak-to-peak amplitude of
the left and right vocal folds, respectively. The nonlinear
detection method confirms that the noiselike disturbance is
not random, but rather it represents deterministic chaos. This
simulation suggests that the vocal fold vibration can be con-
sidered a periodic signal modulated by a small-amplitude
chaotic series. This result is reflected in a similar phenom-
enon often seen in voice. Although this phenomenon cannot
be predicted by the asymmetric two-mass model, it can be
observed in the composite model. Therefore, we can say that
the small-amplitude chaotic component present in strong pe-
riodic voice production systems might be related to the com-
plexities of glottal aerodynamics.

In addition, we also found that in a two-mass model that
ignores the complexity of glottal airflow, only two vibratory
modes (1:1 mode and 1:2 mode) can be observed within the
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asymmetric factor range 0.35=0=0.65. However, using a
composite model that considers complex glottal airflow, the
simulation showed more modes within the same asymmetric
factor range, including 1:1 mode, 1:2 mode, 2:4 mode, and
2:6 mode. It is known that the vocal fold tissue and glottal
airflow interact with each other during voice production.
This suggests that the effect of the airflow force on the vocal
fold dynamics is not the corruption of observations by errors
that are independent of the dynamics, but a feedback process
wherein the system is perturbed by a small random amount
at each time step, just like the effect of dynamic noise on a
dynamical system [47,48,55]. Previous studies found that the
dynamic disturbance could significantly shift the structure of
the bifurcation diagram [17,47,48,52-55]. Consequently, this
rich dynamic phenomenon in the composite model could
also be related to the complex aerodynamics of glottal air-
flow.

In a previous study, it was reported that the disrupting
effect of noise becomes more significant when the system is
close to the bifurcation point corresponding to the onset of
sustained oscillations [55]. In this study, our findings based
on 1.0 kPa subglottal pressure are obtained well inside the
domain of sustained oscillations. When the subglottal pres-
sure is close to the onset value of sustained oscillation, the
lower subglottal pressure brings the vocal fold system near to
its bifurcation point, which could create a significant chaos-
noise effect [55]. On the other hand, the lower subglottal
pressure indicates smaller aerodynamic noise and more regu-
lar glottal airflow. As a result, it can be expected that sub-
glottal pressure is an important parameter that influences the
chaotic component of a voice production system, which
might be of interest for further study.

In summary, this study found that glottal aerodynamics
could greatly contribute to the generation of the nonlinear
dynamic behaviors of voice production, such as bifurcation
and a small-amplitude chaotic component obscured by strong
periodicity. These results might be useful in understanding
the dynamic mechanisms of voice production and in improv-
ing the quality of speech synthesis.
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